
193

On the Unusual Effectiveness of Type-Aware Operator
Mutations for Testing SMT Solvers

DOMINIK WINTERER∗, ETH Zurich, Switzerland

CHENGYU ZHANG∗, East China Normal University, China

ZHENDONG SU, ETH Zurich, Switzerland

We propose type-aware operator mutation, a simple, but unusually effective approach for testing SMT solvers.

The key idea is to mutate operators of conforming types within the seed formulas to generate well-typed

mutant formulas. These mutant formulas are then used as the test cases for SMT solvers. We realized type-

aware operator mutation within the OpFuzz tool and used it to stress-test Z3 and CVC4, two state-of-the-art

SMT solvers. Type-aware operator mutations are unusually effective: During one year of extensive testing

with OpFuzz, we reported 1,092 bugs on Z3’s and CVC4’s respective GitHub issue trackers, out of which 819
unique bugs were confirmed and 685 of the confirmed bugs were fixed by the developers. The detected bugs

are highly diverse — we found bugs of many different types (soundness bugs, invalid model bugs, crashes,

etc.), logics and solver configurations. We have further conducted an in-depth study of the bugs found by

OpFuzz. The study results show that the bugs found by OpFuzz are of high quality. Many of them affect core

components of the SMT solvers’ codebases, and some required major changes for the developers to fix. Among

the 819 confirmed bugs found by OpFuzz, 184 were soundness bugs, the most critical bugs in SMT solvers,

and 489 were in the default modes of the solvers. Notably, OpFuzz found 27 critical soundness bugs in CVC4,

which has proved to be a very stable SMT solver.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: SMT solvers, Fuzz testing, Type-aware operator mutation

ACM Reference Format:
Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the Unusual Effectiveness of Type-Aware Op-

erator Mutations for Testing SMT Solvers. Proc. ACM Program. Lang. 4, OOPSLA, Article 193 (November 2020),

25 pages. https://doi.org/10.1145/3428261

1 INTRODUCTION
Satisfiability Modulo Theory (SMT) solvers are important tools for many programming languages

advances and applications, e.g., symbolic execution [Cadar et al. 2008; Godefroid et al. 2005],

program synthesis [Solar-Lezama 2008], solver-aided programming [Torlak and Bodik 2014], and

program verification [DeLine and Leino 2005; Detlefs et al. 2005]. Incorrect results from SMT solvers

can invalidate the results of these tools, which can be disastrous in safety-critical domains. Hence,

the SMT community has undertaken great efforts to make SMT solvers reliable. Examples include

the standardized input/output file formats for SMT solvers, semi-formal logic/theory specifications,

extensive benchmark repositories, and yearly-held SMT solver competitions. To date, there are

∗
Both authors contributed equally to this work.

Authors’ addresses: Dominik Winterer, ETH Zurich, Department of Computer Science, Switzerland, dominik.winterer@inf.

ethz.ch; Chengyu Zhang, East China Normal University, Software Engineering Institute, China, dale.chengyu.zhang@gmail.

com; Zhendong Su, ETH Zurich, Department of Computer Science, Switzerland, zhendong.su@inf.ethz.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART193

https://doi.org/10.1145/3428261

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

https://doi.org/10.1145/3428261
https://doi.org/10.1145/3428261

193:2 Dominik Winterer, Chengyu Zhang, and Zhendong Su

; \phi

(assert (forall ((a Int))

(exists ((b Int))

(distinct (* 2 b) a))))

(check-sat)

; \phi_{test}

(assert (forall ((a Int))

(exists ((b Int))

(= (* 2 b) a))))

(check-sat)

Fig. 1. Type-aware operator mutation illustrated. We mutate the distinct operator in 𝜑 to the equals operator
(see 𝜑test). Formula 𝜑test triggers a soundness bug in Z3 which reports sat on this unsatisfiable formula.
https://github.com/Z3Prover/z3/issues/3973

several mature SMT solvers, among which Z3 [de Moura and Bjørner 2008] (5.8K stars on GitHub)

and CVC4 [Barrett et al. 2011] (433 stars on GitHub) are the most prominent ones. Both Z3 and

CVC4 are very stable and reliable. In Z3, there have been fewer than 150 reported soundness bugs

in more than three years, while fewer than 50 in CVC4 in more than 8 years.1 Despite this, SMT

solvers are complex pieces of software and inevitably still have latent bugs. Various automated

testing approaches [Blotsky et al. 2018; Brummayer and Biere 2009b; Bugariu et al. 2018] have been

devised for finding bugs in SMT solvers. However, nearly all SMT solver soundness bugs have still

been exposed directly by their client applications, not by these techniques. This has only begun to

change with the recently proposed Semantic Fusion [Winterer et al. 2020] and STORM [Numair

et al. 2020]. Both exposed a number of soundness bugs in Z3, while Semantic Fusion additionally

exposed some soundness bugs in CVC4. Yet, it is unclear whether SMT solvers have reached a

strong level of maturity and how many latent bugs remain in them.

Type-aware operator mutation. To answer this question, we introduce type-aware operator

mutation, a simple, yet unusually effective approach for stress-testing SMT solvers. Its key idea is to

mutate functions within SMT formulas with functions of conforming types. Fig. 1 illustrates type-

aware operator mutation on an example formula. We replace the "distinct" in 𝜑 by an operator of

conforming type, e.g., the equals operator "=" to obtain formula 𝜑test. We then differentially test

SMT solvers with 𝜑test as input and observe their results. If the results differ, e.g., one SMT solver

returns sat while the other returns unsat, we have found a soundness bug in either of the tested

solvers. Formula 𝜑test is clearly unsatisfiable, as 𝑏 cannot exist whenever 𝑎 is odd. In fact, while

CVC4 correctly returns unsat on 𝜑test, Z3 incorrectly reports sat on 𝜑test. Thus, 𝜑test has triggered

a soundness bug in Z3 which was promptly fixed by Z3’s main developer.

Bug hunting with OpFuzz. We have engineered OpFuzz, a practical realization of type-aware

operatormutation.OpFuzz is unusually effective. During our bug hunting campaign from September

2019 to September 2020, we found and reported 1,092 bugs in Z3 and CVC4 issue trackers, among

which 819 were confirmed by the developers and 685 were already fixed. We have found bugs

across various logics such as (non-)linear integer and real arithmetic, uninterpreted functions,

bit-vectors, strings, sets, sequences, array, floating-point, and combinations of these logics. Among

these, most of the bugs (489) were found in the default modes of the solvers, i.e., without additionally
supplied options. This underpins the importance of our findings. We have found many high-quality

soundness bugs in Z3 and notably also in CVC4, which has been proven to be a very robust

SMT solver by previous work. The root causes of the bugs that we found are often complex and,

sometimes require the developers to perform major code changes to fix the underlying issues. The

developers of Z3 and CVC4 greatly appreciated our bug finding effort with comments like "Great

find!", "Thanks a lot for the bug report!" or labelling our bug reports as "major".

1
Data recorded prior to any SMT fuzzing campaigns: July 2010 to October 2019 for CVC4; April 2015 to October 2019 for Z3.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

https://github.com/Z3Prover/z3/issues/3973

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:3

Approach
Bugs in Z3 Bugs in CVC4

soundness all soundness all

StringFuzz [Blotsky et al. 2018] 0 (0) 1 (0) - -

BanditFuzz [Scott et al. 2020] ≥ 1 (0) ≥ 1 (0) - -

Bugariu et al. [Bugariu and Müller 2020] 3 (1) 5 (3) 0 (0) 0 (0)

YinYang [Winterer et al. 2020] 25 (24) 39 (36) 5 (5) 9 (8)

STORM [Numair et al. 2020] 21 (17) 27 (21) 0 (0) 0 (0)

OpFuzz 157 (114) 578 (316) 27 (11) 241 (185)

Fig. 2. Comparison of confirmed bugs found by OpFuzz against the bug findings of recent SMT solver testing
approaches on the trunks of Z3 and CVC4. In parentheses: confirmed bugs in the default modes of the solvers.
Performance issues are excluded from this comparison.

Comparison of OpFuzz with recent SMT fuzzers. In this paper, we use the term bug trigger

to refer to a formula that triggers a bug in an SMT solver and the term bug to refer to a single

unique bug in an SMT solver. Note, multiple bug triggers can be caused by the same underlying

bug. All bug counts mentioned in this paper refer to unique bugs. Fig. 2 shows a comparison of

OpFuzz with recent tools on SMT solver testing from the last two years in terms of bug counts.

We have not considered older approaches and defer to the related work section (Section 6) for a

detailed discussion and literature review. Recent approaches can be roughly separated into two

categories: generators (StringFuzz [Blotsky et al. 2018], Bugariu and Müller’s approach [Bugariu

and Müller 2020], BanditFuzz [Scott et al. 2020]) and mutators (StringFuzz, YinYang [Winterer

et al. 2020], STORM [Numair et al. 2020]). StringFuzz is a string formula generator that also comes

with a mutator. It mainly targets performance issues in z3str3 [Berzish et al. 2017], an alternative

string solver in Z3. StringFuzz can find correctness bugs as a by-product; the paper mentioned one.

Bugariu and Müller’s approach is a formula synthesizer for string logics generating formulas that

are by construction (un)satisfiable. They found 5 bugs in Z3 in total with 3 soundness bugs, but
none in CVC4. Recently, BanditFuzz, a reinforcement learning-based fuzzer has been proposed.

Similar to StringFuzz, BanditFuzz’s main focus is on performance issues in SMT solvers and less on

correctness bugs. The authors have identified inconsistent results for 1600 syntactically different

bug triggers on the four SMT solvers Z3, CVC4, MathSAT [Cimatti et al. 2013], Colibri, and 100

bug triggers in z3str3. However, the number of unique bugs in Z3 remains unclear as the authors

did not reduce and report the bug triggers to filter out the duplicates. Among the mutation-based

fuzzers, YinYang is an approach to stress-test SMT solvers by fabricating fused formula pairs that

are by construction either (un)satisfiable. YinYang found 39 bugs in Z3 and 9 in CVC4. Another

recent approach is STORM which is based on a three-phase process of seed fragmentation, formula

generation and instance generation. STORM has found 27 bugs in Z3 with 21 being soundness

bugs, but none in CVC4.

As Fig. 2 illustrates, our realization OpFuzz of type-aware operator mutation compares favorably

against all existing approaches by a significant margin — OpFuzz found substantially more bugs

in both Z3 and CVC4 in terms of all bugs, the soundness bugs in Z3 and CVC4, and bugs for the

default modes of the solvers. Existing approaches also extensively tested Z3 and CVC4, and have

missed the bugs found by OpFuzz. In summary, we make the following contributions in this paper:

• We introduce type-aware operator mutation, a simple, but unusually effective approach for

stress-testing SMT solvers;

• We have realized type-aware operator mutation within our tool OpFuzz in no more than

212 lines of code. OpFuzz helps SMT solver developers and practitioners to stress-test SMT

solver decision procedures regardless of the used logic and solver;

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:4 Dominik Winterer, Chengyu Zhang, and Zhendong Su

1 (set-logic NRA)

2 (declare-fun a () Real)

3 (declare-fun b () Real)

4 (assert (= (* a b) 1))

5 (check-sat) (get-model)

(a) Invalid model bug in CVC4.
https://github.com/CVC4/CVC4/issues/3407

1 (set-logic NRA)

2 (declare-fun a () Real)

3 (declare-fun b () Real)

4 (assert (> (* a b) 1))

5 (check-sat) (get-model)

(b) Mutating the equals operator in Fig. 3a to a
greater operator makes the bug disappear.

1 (declare-fun f (Int) Bool)

2 (declare-fun g (Int) Bool)

3 (assert (distinct f g))

4 (check-sat)
5 (get-model)

(c) Invalid model bug in CVC4.
https://github.com/CVC4/CVC4/issues/3527

1 (declare-fun f (Int) Bool)

2 (declare-fun g (Int) Bool)

3 (assert (= f g))

4 (check-sat)
5 (get-model)

(d) Mutating the equals operator in Fig. 3c to a
distinct operator makes the bug disappear.

1 (declare-fun x () Real)

2 (assert (distinct x (sin 4.0)))

3 (check-sat)

(e) CVC4 crashes on this formula.
https://github.com/CVC4/CVC4/issues/3614

1 (declare-fun x () Real)

2 (assert (>= x (sin 4.0)))

3 (check-sat)

(f) Mutating the distinct operator in Fig. 3e to a
greater than operator makes the bug disappear.

Fig. 3. Left column: bug-triggering formulas in SMT-LIB format. Right column: formulas that were transformed
from the corresponding bug-triggering formulas by a single operator change.

• Between September 2019 and September 2020, we stress-tested Z3 and CVC4 using OpFuzz,
and reported 1,092 unique bugs on the respective GitHub issue trackers of Z3 and CVC4.

Out of these, 819 bugs were confirmed, and 685 bugs were fixed. Most confirmed bugs were

triggered in the default modes (489) of the solvers, and many were soundness bugs (184)
2
;

• We have conducted an in-depth analysis of the bugs to understand in which parts of the SMT

solvers these bugs occur. Furthermore, we examined the effort necessary for the developers

to fix OpFuzz’s bugs. Our results show that many bugs occur in the core parts of the SMT

solvers, and some require the developers to perform major code changes.

Organization of the paper. Section 2 illustrates the idea behind type-aware operator mutation.

Section 3 presents type-aware operator mutation formally, and shows how we apply it to SMT

solver testing through our realization OpFuzz. We then present our empirical evaluation (Section 4)

which includes detailed statistics about our bug findings. Section 5 introduces our quantitative

analysis of the detected bugs and in-depth investigation on a set of sampled bugs to provide further

insight. Finally, we survey related work (Section 6) and conclude (Section 7).

2 MOTIVATING EXAMPLES
This section gives a short introduction on the SMT-LIB [Barrett et al. 2010] language, the standard

for describing SMT formulas, and then motivates our technique type-aware operator mutation.

SMT-LIB language. We consider the following subset of statements: declare-fun, assert, check-sat

and get-model. Variables are declared as zero-valued functions. For example, the declaration

2
All links to the bug reports are provided under the URL testsmt.github.io/opfuzz_bugs.html

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

https://github.com/CVC4/CVC4/issues/3407
https://github.com/CVC4/CVC4/issues/3527
https://github.com/CVC4/CVC4/issues/3614
testsmt.github.io/opfuzz_bugs.html

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:5

1 (declare-fun a () Real)

2 (assert (> (/ (* 2 a) a) (* a a) 1))

3 (check-sat)

(a) Original formula

1 (declare-fun a () Real)

2 (assert (* (/ (* 2 a) a) (* a a) 1))

3 (check-sat)

(b) Syntactically incorrect mutant.

1 (declare-fun a () Real)

2 (assert (= (/ (* 2 a) a) (* a a) 1))

3 (check-sat)

(c) Syntactically correct mutant.

1 (declare-fun a () Real)

2 (assert (= (/ (* 2 a) a) (/ a a) 1))

3 (check-sat)

(d) Bug triggering mutant.

Fig. 4. Motivating examples for type-aware operator mutation.

"(declare-fun a () Real)" declares a variable of type real. An assert statement specifies con-

straints. The predicates within the constraints have different types, e.g., the constraint "(assert (<=

(/ x 4) (* 5 x)))" includes predicates of real and boolean types. Multiple constraints can be viewed

as the conjunction of the constraints in each individual constraint statement. The (check-sat)

statement queries the solver to decide on the satisfiability of a formula. If all constraints are satisfied,

the formula is satisfiable; otherwise, the formula is unsatisfiable. We can obtain a model, i.e., a
satisfiable assignment, for a satisfiable formula by the (get-model) statement.

Type-aware operator mutation. We first examine three exemplary bugs that were found by our

technique. Consider the formula in Fig. 3a on which CVC4 returns the following model: 𝑎 = − 3
2 and

𝑏 = − 1
2 . This model is invalid as 𝑎 · 𝑏 ≠ 1. Mutating the equals operator = to the greater operator >

hides this bug (see Fig. 3b). As another example, consider the formula in Fig. 3c. CVC4 gives an

invalid model on this formula by setting 𝑓 = 𝑔 = false . Furthermore CVC4 crashes on the formula

in Fig. 3e. Again in both cases, the bug disappears with a single operator change (see Fig. 3b and

Fig. 3d). All illustrated cases show that operators play an important role in triggering SMT solver

bugs. This inspired our technique, type-aware operator mutation, that is to stress-test SMT solvers

via mutating operators and use the so mutated formulas for stress-testing SMT solvers.

However, substituting an operator with another arbitrary operator may not always yield a

syntactically correct formula. As an example, consider Fig. 4a that presents a syntactically correct

seed formula. By substituting the first operator greater than operator > to *, the formula becomes

syntactically incorrect (see Fig. 4b). This is because the assert statement expects a boolean ex-

pression, while * returns a real. The formula of Fig. 4b is of little value to testing an SMT solver’s

decision procedures since the solvers would reject such formulas already at a preprocessing stage.

Hence, we have to consider the operator types for the substitutions, i.e., avoid substituting an

operator returning a boolean value, such as =, by an operator returning a real, such as *; neither

should we substitute an operator with a single argument, like not, by an operator of two or more

arguments, such as =. Instead we mutate the operators in a type-aware fashion. Consider the first >
of the formula in Fig. 4a. It takes an arbitrary number of numeral arguments and returns a boolean.

Candidates for its substitution are <=, >=, <, =, and distinct, all of which have a conforming

type, i.e., read more than one numerals and return a boolean. Therefore, we can safely substitute >

of the formula in Fig. 4a with a random candidate, e.g., =. As a result, we obtain the mutant formula

in Fig. 4c. This formula is syntactically correct and can successfully pass the preprocessing phase of

the SMT solvers. We call such mutations type-aware operator mutations. As we have the guarantee
that the mutant is a type-correct formula, we can do iterative type-aware operator mutations. Given

the mutant formula in Fig. 4c, we further substitute the second occurrence of * with / safely. This

yields the formula in Fig. 4d which triggered a soundness bug in Z3. Division by zero terms are

specified in the Real and Int theories of the SMT-LIB as the uninterpreted terms, meaning that for a

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:6 Dominik Winterer, Chengyu Zhang, and Zhendong Su

Function types Function Symbols

Γ, 𝐴 <: ⊤ ⊢ 𝐴 × · · · ×𝐴→ Bool =, distinct

Γ ⊢ Quantifier × Bool→ Bool exists, forall

Γ ⊢ Bool × · · · × Bool→ Bool and, or, =>

Γ, 𝐼𝑛𝑡 <: 𝑅𝑒𝑎𝑙 ⊢ Real × · · · × Real→ Bool <=, >=, <, >

Γ, 𝐼𝑛𝑡 <: 𝑅𝑒𝑎𝑙 ⊢ Real × · · · × Real→ Real +, -, *, /

Γ ⊢ Int × · · · × Int→ Int div

Γ ⊢ Int × Int→ Int mod

Fig. 5. SMT function symbols categorized by their type.

term (/ t 0) and arbitrary value v, the equation (= v (/ t 0)) is satisfiable. In fact, we can set

𝑎 = 0 to realize a model for the formula in Fig. 4d, i.e., let the division by zero terms be 1 to satisfy

the assert. Hence, the formula in Fig. 4d is satisfiable. However, Z3 incorrectly reports unsat on it.

3 APPROACH
In this section, we formally introduce type-aware operator mutation and propose OpFuzz, a fuzzer
for stress-testing SMT solvers.

Background. We consider first-order logic formulas of the satisfiability modulo theories (SMT).

Such a formula 𝜑 is satisfiable if there is at least one assignment on its variables under which 𝜑

evaluates to true. Otherwise, 𝜑 is unsatisfiable. We consider formulas to be realized by SMT-LIB

programs
3
in which operators correspond to functions of the SMT theories. We use the terms

functions and operators interchangeably unless stated otherwise.

For a formula 𝜑 , we define 𝐹 (𝜑) to be 𝜑 ’s set of (enumerated) function occurrences. For example,

for 𝜑 = (+ (* 1 1) (- 2 (* 5 2))), we have 𝐹 (𝜑) = {+1, *1, -1, *2}. 𝜑 [𝑓1/𝑓2] describes the substi-
tution of function 𝑓2 by 𝑓1 in 𝜑 . Expressions and functions are typed. For example, 1 is of type

Int, 1.0 is of type Real, "foo" is of type String. Similarly functions also have types. We denote the

type of a function 𝑓 by 𝑓 : 𝐴→ 𝐵 where 𝐴 is the type of its arguments and 𝐵 its return type. We

use Γ to denote the static typing environment of the SMT-LIB language. For example, we write

Γ ⊢ Int × Int→ Int for the type of function mod and Γ ⊢ Int × · · · × Int→ Int for the function div.
Int × · · · × Int means function div accepts more than one argument with type Int. Fig. 5 shows
selected functions and their types considered in this paper. We emphasize that our theory is not

restricted to the functions used in Fig. 5. It can be extended to a richer set of functions and types

according to the SMT-LIB standard.

Similar to other programming languages with types, we can define a subtyping relation for the

SMT-LIB language. We now formalize a fragment of the SMT-LIB’s type system. We define type Int
to be a subtype of Real, i.e., Γ ⊢ 𝐼𝑛𝑡 <: 𝑅𝑒𝑎𝑙 . Let A be an arbitrary type, then we define type A×A to

be a subtype of A × · · · × A, i.e., Γ, 𝐴 <: ⊤ ⊢ A × A <: A × · · · × A. For two functions 𝑓1 : 𝐴1 → 𝐵1

and 𝑓2 : 𝐴2 → 𝐵2 with 𝐴1 <: 𝐴2 and 𝐵2 <: 𝐵1 we have

𝐴1 <: 𝐴2 𝐵2 <: 𝐵1

𝑓2 : 𝐴2 → 𝐵2 <: 𝑓1 : 𝐴1 → 𝐵1

3
We consider the SMT-LIB language in version 2.6.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:7

Procedure OpFuzz (Seeds, 𝑆1, 𝑆2, 𝑛):
𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 ← ∅
while true do

𝜑
𝑅←− Seeds

for 1 to 𝑛 do
𝜑 ′ ← type_aware_mutate (𝜑)

if ¬ validate(𝜑 ′, 𝑆1, 𝑆2) then
𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 ← 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 ∪ {𝜑 ′}

𝜑 ← 𝜑 ′

if Interruption then
break

return 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠

Function type_aware_mutate(𝜑):

𝑓1
𝑅←− 𝐹 (𝜑)

𝑓2
𝑅←− subtypes(𝑓1)

return 𝜑 [𝑓2/𝑓1]

Function validate(𝜑 ′, 𝑆1, 𝑆2):
if 𝑆1 (𝜑 ′) = error ∨
𝑆2 (𝜑 ′) = error ∨
𝑆1 (𝜑 ′) ≠ 𝑆2 (𝜑 ′) then
return false

return true

Fig. 6. Left: OpFuzz’s main process. Right: Function type_aware_mutate realizes type-aware operator muta-
tions and function validate differentially tests the SMT solvers 𝑆1 and 𝑆2.

For example, consider function div of type Int× · · ·× Int→ Int and function mod of type Int× Int→
Int from Fig. 5. We can hence conclude that div’s type is a subtype of mod’s type:

Γ ⊢ Int × Int <: Int × · · · × Int Γ ⊢ Int <: Int
Γ ⊢ Int × · · · × Int→ Int <: Int × Int→ Int

We call a formula 𝜑 well-typed if it complies with the rules of SMT-LIB’s typing system.

3.1 Type-Aware Operator Mutation
Having provided basic background, we present type-aware operator mutation, the key concept

of this paper. We first introduce type-aware operator mutations and then show that type-aware

operator mutants realize well-typed SMT-LIB programs.

Definition 3.1 (Type-aware operator mutation). Let 𝜑 be an SMT formula and let 𝑓1 : 𝑡1 and 𝑓2 : 𝑡2
be two of its functions. We say formula 𝜑 ′ = 𝜑 [𝑓2/𝑓1] is a type-aware operator mutant of 𝜑 if

𝑡2 <: 𝑡1. Transforming 𝜑 to 𝜑 [𝑓2/𝑓1] is called type-aware operator mutation.

Proposition 3.2. Type-aware operator mutants are well-typed.

Proof. Let 𝜑 be a well-typed SMT formula and let 𝜑 ′ be a type-aware operator mutant of 𝜑 .

According to Definition 3.1 we know that 𝜑 ′ = 𝜑 [𝑓2/𝑓1] where 𝑓1 : 𝑡1 and 𝑓2 : 𝑡2 are two of 𝜑’s

functions. By Definition 3.1, we also know 𝑡2 <: 𝑡1. This implies that all arguments of 𝑓1 are also

accepted by 𝑓2 and all values returned by 𝑓2 could be produced by 𝑓1. Thus, 𝑓2 accepts all the inputs

provided by 𝜑 ′, and formula 𝜑 ′ accepts all the outputs of 𝑓2. Therefore 𝜑 ′ is well-typed. □

Example 3.3. Consider 𝜑 = (assert (= (mod 1 1) 1) with 𝐹 (𝜑) = {mod, =}. We randomly pick

function mod from 𝐹 , substitute it with a function that has its subtype, e.g., function div. We get the

following type-aware operator mutant 𝜑 ′ = (assert (= (div 1 1) 1). As Proposition 3.2 shows,

𝜑 ′ is guaranteed to be well-typed. Thus, we can use 𝜑 ′ to test SMT solvers.

3.2 OpFuzz
We implemented OpFuzz, a type-aware operator mutation-based fuzzer, for stress-testing SMT

solvers. OpFuzz leverages type-aware operator mutation to generate test inputs and validates the

results of the SMT solvers via differential testing, i.e., by comparing the results of two or more SMT

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:8 Dominik Winterer, Chengyu Zhang, and Zhendong Su

solvers and reporting their inconsistencies. Fig. 6 presents the algorithm of OpFuzz. OpFuzz takes
a set of seed formulas Seeds, two SMT solvers 𝑆1, 𝑆2 and parameter 𝑛 as its input. OpFuzz collects
bug triggers in the set 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 which is initialized to the empty set. The main process runs inside

a while loop until an interrupt is detected, e.g., by the user or by a time or memory limit that is

reached. We first choose a random formula 𝜑 from the set of formulas Seeds for initialization. In
the while loop, we then perform a type-aware mutation on 𝜑 realized by the type_aware_mutate
function. In the type_aware_mutate function, we first randomly pick a function 𝑓1 from the set of

functions in 𝜑 . Then, we randomly choose a function 𝑓2 from the set of 𝑓1’s subtypes. The subtype

function is realized based on Fig. 5. After we obtained 𝜑 ′ = 𝜑 [𝑓2/𝑓1] by type-aware mutation

on 𝜑 , we call the function validate. It tests two SMT solvers 𝑆1 and 𝑆2 via differential testing

on the input formula 𝜑 ′. First, it checks whether either of the solvers has produced an error on

processing 𝜑 ′, e.g., the SMT solver did not terminate successfully, threw out an error message. We

distinguish two cases: either 𝜑 ′ triggered an assertion violation or segmentation fault (crash), or a

model validation error that occurs for solvers with model validation enabled (invalid model). In

both cases, the function returns false . Otherwise, it checks whether the results of the solvers are
different, and returns false if so, else validate returns true indicating that 𝜑 ′ has not exposed a

bug trigger in neither of the solvers 𝑆1 and 𝑆2. OpFuzz realizes an 𝑛-times repeated type-aware

operator mutation on every seed formula. The choice for parameter 𝑛 is arbitrary but an 𝑛 within

200 and 400 has worked well in practice.

OpFuzz is very light-weight. We realized OpFuzz in a total of only 212 lines of Python 3.7 code.

OpFuzz can be run in parallel mode, which can significantly increase its throughput. Users can

customize OpFuzz’s command-line interface to test specific solvers and/or configurations. OpFuzz
can be used with any SMT solver that takes SMT-LIB v2.6 files as its input. We have implemented

the type-aware operator mutations w.r.t. the function symbols in Fig. 5.

4 EMPIRICAL EVALUATION
This section details our extensive evaluation with OpFuzz demonstrating the practical effectiveness

of type-aware operator mutation for testing SMT solvers. Between September 2019 and September

2020, we were running OpFuzz to stress-test the SMT solvers Z3 [de Moura and Bjørner 2008]

and CVC4 [Barrett et al. 2011]. We have chosen Z3 and CVC4, since they (1) both are popular and

widely used in academia and industry, (2) support a rich set of logics, and (3) adopt an open-source

development model. During our testing period, we have filed numerous bugs on the issue trackers

of Z3 and CVC4. This section describes the outcome of our efforts.

Result summary and highlights. In summary, OpFuzz is unusually effective.

• Many confirmed bugs: In one year, we have reported 1,092 bugs, and 819 unique bugs in Z3

and CVC4 have been confirmed by the developers.

• Many soundness bugs: Among these, there were 184 soundness bugs in Z3 and CVC4. Most

notably, we have found 27 in CVC4.

• Most logics affected: Our bug findings affect most SMT-LIB logics including strings, (non-

)linear integer and real arithmetic, bit-vectors, uninterpreted functions, floating points, arrays,

sets, sequences, horn, and combinations thereof.

• Most bugs in default modes: 489 out of our confirmed 819 bugs are in the default modes of the

solvers, i.e., without additionally supplied options.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:9

4.1 Evaluation Setup
Hardware setup and test seeds. We have run OpFuzz on an AMD Ryzen Threadripper 2990WX

processor with 32 cores and 32GB RAM on an Ubuntu 18.04 64-bit. As test seeds, we have mainly

used the SMT-LIB benchmarks[SMT-LIB 2020]. We chose the SMT-LIB benchmarks as our test seeds

since they make the largest collection of SMT formulas in the SMT-LIB 2.6 language. These SMT-LIB

benchmarks are also used in the SMTComp, the annual SMT solver competition. Therefore, they

are unlikely to trigger bugs in Z3 and CVC4 since they have already been run on them. In addition

to the SMT-LIB benchmarks, we used the regression test suites of Z3[Z3 2020] and CVC4[CVC4

2020]. We show the seed formula counts categorized by logic and solving mode in the Appendix A.

We treated all seed files equally during fuzzing. The effort spent on testing for a specific logic is

therefore proportional to the number of its seed files within the overall seed set. Consequently,

logics with a high seed count get tested more frequently as compared to others with a lower seed

count. We regularly ran Z3 and CVC4 on all seed files and excluded bug triggering seeds but have

very rarely encountered any bug triggering seed formulas.

Tested options and features. We mainly focused our testing efforts on the default modes of

the solvers. For CVC4, this includes enabling the options –produce-models, –incremental and

–strings-exp as needed to support all test seed formulas. To detect invalid model bugs, we have

supplied –check-models to CVC4 and model.validate=true to Z3. We consider these to be part

of the default mode for the two solvers Z3 and CVC4 if apart from these necessary options, no

other options or tactics were used. Besides the default modes of Z3 and CVC4, we have consid-

ered many frequently used options and solver modes for Z3 and CVC4 of which we only detail a

subset here. For Z3, we have stress-tested several tactics and several arithmetic solvers including

smt.arith_solver=x with x ∈ {1, · · · , 6}. We have also tested, among others, the string solver

z3str3 by supplying smt.string_solver=z3str3. In CVC4 we have tested, among many other op-

tions, syntax-guided synthesis procedure [Reynolds et al. 2015] by specifying –sygus-inference

and higher-order reasoning for uninterpreted functions by specifying –uf-ho.

Bug types. We have encountered many different kinds of bugs and issues while testing SMT solvers.

We distinguish them by the following categories with two SMT solvers 𝑆1 and 𝑆2.

• Soundness bug: Formula 𝜑 triggers a soundness bug if solvers 𝑆1 and 𝑆2 both do not crash

and give different satisfiabilities for 𝜑 .

• Invalid model bug: Formula 𝜑 triggers an invalid model bug if the model returned by the

solver does not satisfy 𝜑 .

• Crash bug: Formula 𝜑 triggers a crash bug if the solver throws out an assertion violation or a

segmentation fault while solving 𝜑 .

OpFuzz detects soundness bug triggers by comparing the standard outputs of the solvers 𝑆1 and 𝑆2.

OpFuzz detects invalid model bug triggers by internal errors when using the SMT solver’s model

validation configuration. A crash bug trigger is detected whenever a solver returns a non-zero exit

and no timeout occurred.

Bug trigger de-duplication. OpFuzz collects bug triggers that may stem from the same underlying

bug. Hence, we de-duplicated the bug triggers after each fuzzing run with OpFuzz to avoid duplicate

bug reports on the GitHub issue trackers. Crash bugs are either assertion violations or segmentation

faults. We de-duplicate assertion violations via the location information (file name and line number)

printed on standard output/error. We de-duplicate segmentation faults by comparing their ASAN

traces. For soundness and invalid model bugs we used the following procedure. We first categorize

the bug triggers by theory. We do this because bug triggers in different theories are likely to be

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:10 Dominik Winterer, Chengyu Zhang, and Zhendong Su

Status Z3 CVC4 Total

Reported 811 281 1,092

Confirmed 578 241 819

Fixed 521 164 685

Duplicate 88 18 106

Won’t fix 106 16 122

(a)

Type Z3 CVC4 Total

Crash 316 185 501

Soundness 157 27 184

Invalid model 83 19 102

Others 22 10 32

(b)

#Options Z3 CVC4 Total

default 388 101 489

1 109 67 176

2 45 31 76

3+ 36 42 78

(c)

Fig. 7. a) Status of bugs found in Z3 and CVC4. b) Bug types among the confirmed bugs. c) Number of options
supplied to the solvers among the confirmed bugs.

unique bugs. Then, we select one bug trigger per theory at a time for reporting. If the bug was fixed,

we checked the remaining bug triggering formulas of the same theory. If either one of them still

triggered a bug in the solver, we repeat this process until none of them triggers a bug anymore.

Bug reduction. When a bug trigger is selected in the trigger de-duplication, we reduce the bug-

triggering formula to a small enough size for reporting. We use C-Reduce [Regehr et al. 2012], a C

code reduction tool which also works for the SMT-LIB language.

4.2 Evaluation Results
Having defined the setup and bug types, we continue with the presentation of the evaluation results.

The section is divided into three parts: (1) statistics on the bug findings by OpFuzz to assess its

effectiveness, (2) coverage measurements of OpFuzz relative to the seed formulas (3) solver trace

comparisons to gain further insights into the technique.

Bug findings. Fig. 7a shows the bug status counts. By "Reported", we refer to the unique bugs

after bug trigger de-duplication that we posted on the GitHub issue trackers of the solvers; by

"Confirmed", we refer to those posted bugs that were confirmed by the developers as unique bugs;

by "Fixed", we refer to those posted bugs that were confirmed by the developers as unique bugs and

addressed through at least one bug fixing commit; by "Duplicate", we refer to those bugs posted on

GitHub that have been identified by the developers as duplicate to another bug report of ours or to

a previously existing bug report; by "Won’t fix", we refer to those posted bugs that were rejected by

the developers, due to misconfigurations.

We have reported a total of 1,092 bugs on Z3’s and CVC4’s respective issue trackers. Among

these, 819 unique bugs were confirmed and 685 were fixed. Although we devoted equal testing effort

to both solvers, we found more than twice as many bugs in Z3 as in CVC4. Previous approaches

made similar observations [Winterer et al. 2020]. Fig. 7b shows the bug types. Among the bug types

of the confirmed bugs, crash bugs were most frequent (501), followed by soundness bugs (184) and

invalid model bugs (102). The type "Others" refers to all other unexpected behaviors in SMT solvers

such as rejecting syntax-correct formulas, alarming invalid models when generating a valid model.

The large majority (489 out of 819) of bugs found by OpFuzz were found in the default modes of

the solvers, i.e., no additional options were supplied, some were found with one or two additional

options enabled, and clearly less bugs with more than three options enabled (see Fig. 7c).

We have also examined the distribution of logics among the confirmed bugs of Z3 and CVC4

(see Fig. 8a and 8b). We observe that most soundness bugs in Z3 are in the string logics QF_S (42),

QF_SLIA (14) and nonlinear logics NRA (20), QF_NRA (12). Notably, there are also a number of

soundness bugs in bitvectors QF_BV (7) and linear real and integer arithmetic QF_LRA (4), LRA

(4), LIA (4). Similar to Z3, most soundness bugs in CVC4 are also in the string logic QF_S (4) and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:11

Logic S I C Total

QF_S 42 27 43 112

NRA 20 - 44 64

QF_SLIA 14 7 20 41

QF_NRA 12 9 18 39

QF_LIA 2 6 25 33

QF_NIA 13 3 16 32

UFLIA 4 6 15 25

UF 3 1 18 22

QF_BV 7 3 8 18

LIA 4 - 13 17

Uncategorized 5 - 10 15

QF_UF 1 6 8 15

NIA 5 - 9 14

QF_FP 1 3 9 13

QF_LRA 4 1 7 12

LRA 4 1 7 12

Horn 4 2 5 11

QF_AX 2 1 7 10

ALIA 1 - 8 9

BV 3 - 5 8

QF_UFLIA - 2 4 6

Set 1 - 5 6

QF_NIRA 1 4 1 6

UFIDL 2 - 2 4

AUFNIRA - 1 2 3

UFLRA - - 2 2

QF_ABVFP - - 2 2

QF_UFIDL - - 1 1

UFNIA 1 - - 1

QF_ABV - - 1 1

FP - - 1 1

NIRA 1 - - 1

Total 157 83 316 556

(a) Z3

Logic S I C Total

QF_NRA 3 4 20 27

Set 3 - 17 20

UFLIA - 2 16 18

NRA 1 1 15 17

UF 1 - 16 17

QF_BV 1 - 15 16

Uncategorized 2 2 8 12

QF_LIA 2 - 8 10

QF_S 4 - 6 10

LIA 1 - 8 9

QF_UF 1 - 8 9

LRA - - 9 9

BV - - 8 8

QF_LRA 1 - 5 6

QF_NIA 2 - 3 5

QF_AX - - 5 5

QF_FP - - 4 4

QF_AUFBVLIA - 2 1 3

QF_AUFLIA - 3 - 3

QF_UFLIA 1 2 - 3

QF_ABVFP - - 3 3

NIA 1 - 2 3

QF_ABV - 1 1 2

QF_SLIA 1 - 1 2

UFNIRA - - 1 1

NIRA - - 1 1

AUFNIRA - 1 - 1

UFBV - - 1 1

QF_UFNRA - 1 - 1

QF_UFLRA - - 1 1

QF_UFIDL - - 1 1

QF_NIRA 1 - - 1

QF_ALIA 1 - - 1

UFNRA - - 1 1

Total 27 19 185 231

(b) CVC4

Fig. 8. Logic distribution of the confirmed bugs: (S) soundness bugs, (I) invalid model bugs, (C) crash bugs.
"Uncategorized" refers to bugs that could not be associated with either of SMT-LIB’s logics.

Z3 CVC4

lines functions branches lines functions branches

Seeds1000 33.2% 36.2% 13.7% 28.5% 47.1% 14.3%

Type-aware Mutation 33.5% 36.4% 13.8% 28.8% 47.4% 14.4%

Fig. 9. Line, function and branch coverage achieved by the baseline Seeds1000 versus OpFuzz on Z3 and
CVC4’s respective source codes.

nonlinear arithmetic QF_NRA (3). Moreover, there are three soundness bugs in set logics. However,

in difference to Z3 there are almost no soundness bugs in bitvectors and only a single soundness

bug in the linear arithmetic QF_UFLIA.

Code coverage ofOpFuzz’smutations. Code coverage is a reference for the sufficiency of software

testing. This experiment aims to answer whether the mutants generated by OpFuzz can achieve

higher coverage than the seed formulas. We randomly sampled 1000 formulas (Seeds1000) from all

formulas that we used for stress-testing SMT solvers. We instantiated OpFuzz with 𝑛 = 300, run

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:12 Dominik Winterer, Chengyu Zhang, and Zhendong Su

OpFuzz on the seeds Seeds1000 and then measure the cumulative line/function/branch coverage

over all formulas and runs.
4
For all coverage measurements, we used Gcov

5
from the GCC suite.

The results show that OpFuzz increases the code coverage upon Seeds1000 (Fig. 9). Z3 and CVC4
have over 436K LoC and 238k LoC respectively, so that 0.1% improvement already translate to

hundreds of additionally covered lines. However, although noticeable, the coverage increments

are not significant (≤ 0.5%). A partial explanation is that decision procedures of Z3 and CVC4 are

highly recursive. This leads to many calls of the same functions with different arguments. Hence

the difference in line/function/branch coverage achieved by different formulas of the same theory,

may not be as significant. This experiment also provides further evidence that standard coverage

metrics (e.g., statement and branch coverages), although useful, are insufficient for measuring the

thoroughness of testing.

Execution trace comparison. Since code coverage could not thoroughly explain the effectiveness

of OpFuzz, we also examine the internals of the solvers by investigating the similarity of their

execution traces upon type-aware operator mutations.What is the relative similarity of the execution
traces with respect to the seed? In the following experiment, we approach this question. In Z3

and CVC4, we can obtain an execution trace by setting the flags TRACE=True and –trace-theory

respectively. Before describing this experiment, we first show the format of Z3’s and CVC4’s

respective traces via an example. Consider formula 𝜑 and its type-aware operator mutation 𝜑mutant

(see Fig. 10a and 10d). Fig. 10c and 10e shows Z3’s and CVC4’s traces on solving 𝜑 respectively,

Fig. 10d and 10f show Z3’s and CVC4’s traces on solving 𝜑mutant respectively.

Having obtained an intuition of the execution traces, we now get to the actual experiment. Our

aim is to measure the relative change in the execution traces of Z3 and CVC4. We therefore perform

40 mutation steps for every formula in Seeds1000 and record the execution trace triggered in each

step. To quantify the similarity of two traces 𝑡1 and 𝑡2, we compute a metric 𝑠𝑖𝑚(𝑡1, 𝑡2) with

𝑠𝑖𝑚(𝑡1, 𝑡2) =
2 · |𝐿𝐶𝑆 (𝑡1, 𝑡2) |

#𝑙𝑖𝑛𝑒𝑠 (𝑡1) +#𝑙𝑖𝑛𝑒𝑠 (𝑡2)
where 𝐿𝐶𝑆 (𝑡1, 𝑡2) corresponds to the longest common subsequence of 𝑡1 and 𝑡2; #𝑙𝑖𝑛𝑒𝑠 (𝑡1) and
#𝑙𝑖𝑛𝑒𝑠 (𝑡2) are the number of lines in 𝑡1 and 𝑡2 respectively. As an example, re-consider Fig. 10.

The differing lines of 𝜑 ’s trace and 𝜑mutant ’s trace are shaded. 𝜑 ’s Z3 trace and 𝜑mutant ’s Z3 trace

match in 10 out of 11 lines and therefore their similarity score is
10
11 . For the trace pair of CVC4,

the number of longest common subsquence is of length 3 and hence the similarity of Z3’s trace is

1
2 . To compute the longest common subsequence, we used the difflib6 package from python’s

standard library. Note that type-aware operator mutation may rename the AST node identifiers of

Z3’s trace. Here, we under-approximate the similarity of Z3 traces by considering the identifier

renaming as the change of the trace.

In our experiment, we fix the trace of the original formula to be 𝑡1, and 𝑡2 corresponds to the

trace triggered of the mutant. Fig. 11 shows the similarity of the corresponding mutation step

averaged over all formulas in Seeds1000. The results of Z3 and CVC4 consistently show that along

with a gradual mutation step increase, the similarity between the traces triggered by the mutant

and the original formula gradually decreases. The result indicates that OpFuzz can generate diverse

test cases that trigger different execution traces via type-aware operator mutation.

Takeaways. We designed three quantitative evaluations to measure and gain an intuition about

the effectiveness of OpFuzz. First, we observe that OpFuzz can find a significant number of bugs in

4
This makes a total of 300k runs.

5
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

6
https://docs.python.org/3/library/difflib.html

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:13

1 ;phi

2 (declare-fun a () Real)

3 (declare-fun b () Real)

4 (assert (< a 0))

5 (assert (< b 0))

6 (check-sat)
7

(a)

1 ;phi_mutant

2 (declare-fun a () Real)

3 (declare-fun b () Real)

4 (assert (> a 0))

5 (assert (< b 0))

6 (check-sat)
7

(b)

1 [mk-app] #23 a

2 [mk-app] #24 Int

3 [attach-meaning] #24 arith 0

4 [mk-app] #25 to_real #24

5 [mk-app] #26 < #23 #25

6 [mk-app] #27 Real

7 [attach-meaning] #27 arith 0

8 [inst-discovered] theory-solving 0

9 arith# ; #25

10 [mk-app] #28 = #25 #27

11 [instance] 0 #28

12 [attach-enode] #28 0

13

(c)

1 [mk-app] #23 a

2 [mk-app] #24 Int

3 [attach-meaning] #24 arith 0

4 [mk-app] #25 to_real #24

5 [mk-app] #26 > #23 #25

6 [mk-app] #27 Real

7 [attach-meaning] #27 arith 0

8 [inst-discovered] theory-solving 0

9 arith# ; #25

10 [mk-app] #28 = #25 #27

11 [instance] 0 #28

12 [attach-enode] #28 0

13

(d)

1 TheoryEngine::assertFact

2 (not (>= b 0.0)) (0 left)

3 Theory<THEORY_ARITH>::assertFact[1]

4 ((not (>= a 0.0)), false)

5 TheoryEngine :: assertFact

6 ((not (>= b 0.0)))

7 Theory <THEORY_ARITH >:: assertFact [1]

8 ((not (>= b 0.0)), false)

9 Theory::get() =>

10 (not (>= a 0.0))(1 left)

11 Theory ::get() =>

12 (not (>= b 0.0)) (0 left)

13

(e)

1 TheoryEngine::assertFact

2 ((not (>= (* (- 1.0) a) 0.0)))

3 Theory<THEORY_ARITH>::assertFact[1]

4 ((not (>= (* (- 1.0) a) 0.0)), false)

5 TheoryEngine :: assertFact

6 ((not (>= b 0.0)))

7 Theory <THEORY_ARITH >:: assertFact [1]

8 ((not (>= b 0.0)), false)

9 Theory::get() =>

10 (not (>= (* (- 1.0) a) 0.0)) (1 left)

11 Theory ::get() =>

12 (not (>= b 0.0)) (0 left)

13

(f)

Fig. 10. Left column: (a) seed formula 𝜑 (b) Z3 trace snippet of 𝜑 and (c) CVC4 trace snippet of 𝜑 . Right
column: (d) type-aware operator mutant 𝜑mutant (e) Z3 trace snippet of 𝜑mutant (f) CVC4 trace snippet of
𝜑mutant of 𝜑 . Differences in the execution traces snippets are shaded.

various logics, solver configurations, most of which are in default mode. Second, to understand

why OpFuzz can find so many bugs, we designed a coverage evaluation. The evaluation result

shows that OpFuzz can increase coverage, but the increment is minor. As the coverage evaluation

did not answer why OpFuzz is effective, we further designed the third evaluation investigating the

similarity of execution traces. The trace evaluation shows that OpFuzz can gradually change the

execution traces of the solvers, which partially explains the effectiveness of OpFuzz.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:14 Dominik Winterer, Chengyu Zhang, and Zhendong Su

1 5 10 15 20 25 30 35 40

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

Z3

1 5 10 15 20 25 30 35 40

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

CVC4

Fig. 11. Average similarity of consecutively generated mutants (y-axis) per mutation step (x-axis).

5 IN-DEPTH BUG ANALYSIS
This section presents an in-depth study on OpFuzz’s bug findings in which we (1) quantify the

fixing efforts for Z3’s and CVC4’s developers (2) identify weak components in Z3 and CVC4 and (3)

examine the file sizes of bug triggering SMT formulas. We summarize the insights gained and then

present selected bug samples, examine their root causes, and the developer’s fixes.

5.1 Quantitative Analysis
We collected all GitHub bug reports that we have filed in our extensive evaluation of OpFuzz. This
data serves as the basis for our analysis. We guide our analysis with three research questions.

RQ1: Howmuch effort had the developers taken with fixing the bugs found by OpFuzz? To

approach this question, we consider two metrics: the files affected by a bug fix and the number

of lines of code (LoC) for fixing. If a bug causes many lines of code and/or file changes, this may

indicate a high fixing effort necessary by the developers. To examine the LoC and file changes for

the bugs found by OpFuzz, we collected 377 bug fixing commits in Z3 and 101 bug fixing commits

in CVC4. We solely considered commits that could be one-to-one matched to their bug reports i.e.,
the commit log mentions the issue id of our bug reports and no other issue ids. Fig. 12 shows the

distributions of file changes for bug-fixing commits in Z3 (left) and CVC4 (right). We observe that,

in both solvers, most bug-fixing commits change less than five files, and the single file fixes are the

majority. However, a few commits affected many files. We have manually examined the right tail

of the distribution. We specifically present the top-2 file changing commits in both Z3 and CVC4

individually to demonstrate exemplary reasons for major changes in Z3 and CVC4. We begin with

Z3. The highest-ranked bug-fixing commit in Z3 triggered 65 changes. The main part of this fix was

in "smt/theory_bv.cpp" which is the implementation of bit-vector logic and also serves as the low-

level implementation for floating-point logic. The developers’ fix resulted in many function name

updates and added checkpoints and additional 64 file changes. Another bug-fixing commit in Z3

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:15

1 2 3 4 5 6 7 8 9 11 13 17 55 65
0

100

200 185

81

46
19 22

7 4 5 1 3 1 1 1 1

#File changes

#C
om

m
it
s

1 2 3 4 5 6 13 18
0

20

40

60

80

59

24

6 6 3 1 1 1

#File changes

#C
om

m
it
s

Fig. 12. Distributions of the file changes for a single bug-fixing commit in Z3 (left) and CVC4 (right).

0-
10

10
-2
0

10
0-
20
0

20
-3
0

20
0-
30
0

30
-4
0

30
0-
40
0

40
-5
0

40
0-
50
0

50
-6
0

50
0+

60
-7
0

70
-8
0

80
-9
0

90
-1
00

0

50

100

150

200

163

63

18

44

7
21

2
16

19 1
13 10 7 2

#LOC changes

#C
om

m
it
s

0-
10

10
-2
0

10
0-
20
0

20
-3
0

20
0-
30
0

30
-4
0

30
0-
40
0

40
-5
0

50
-6
0

50
0+

60
-7
0

70
-8
0

80
-9
0

90
-1
00

0

10

20

30

40
34

25

2

9

45
34 3 22 3 3 2

#LOC changes

#C
om

m
it
s

Fig. 13. Distributions of the LoC changed in one commit in Z3 (left) and CVC4 (right).

that affected 55 files is a crash. It was caused by an issue in Z3’s abstract syntax tree. The core issue

addressed by this fix was in "ast/rewriter/rewriter_def.h" and "ast/rewriter/th_rewriter.cpp".

Reorganizations of the assertion checks triggered additional 54 file changes. In CVC4, the top-2

fixes with most file changes (18 and 13) are both caused by the crash bugs affecting string operators.

The first bug is due to the unsound variable elimination that triggered the assertion violation.

The fix refactored the variable elimination with 295 LoC changed. For fixing the second bug, the

developers added support for the regex operators re.loop and re.ˆ that were recently added to the

theory of strings. As an intermediate conclusion we observe: Although a relatively high numbers

of file changes indicate extensive revisions in the SMT solvers Z3 and CVC4, their root cause are

often rather simple fixes such as updating function names, adding assertions, etc.We therefore also

investigate the LoC changes for each bug fixing commit. Many simple fixes, on the other hand,

exhibit subtle missed corner cases.

Fig. 13 presents the distributions of the LoC changes for each bug-fixing commit. For both Z3

and CVC4, we observe that most commits have less than 100 LoC changes and many bugs fixes

only involve a 0-10 LoC change. We have manually inspected all 0-10 LoC fixes and observed the

majority of them are subtle corner cases. Again we examine top-2 commits for each solver. In

Z3 these have 572 and 332 LoC changes respectively. The 572 LoC change commit is a fix for a

soundness bug in string logic. It leads to an extensive change in the rewriter of the sequential solver.

The 481 LoC changes commit is a fix for a soundness bug in non-linear arithmetic logic. The fix was

systematically revamping the decoupling of monomials in non-linear arithmetic logic. For CVC4,

the top-2 commits have 1162 and 588 LoC changes respectively. The 1162 LoC changes in CVC4

commit fixes a crash bug by systematically removing the instantiation propagator infrastructure

of CVC4. The developer commented that they will redesign this infrastructure in the future. The

bugfix with 588 LoC changes is fixing a soundness bug which is labeled as "major" in CVC4’s issue

tracker. The bug is due to a buggy ad-hoc rewriter that was incorporated into CVC4’s extended

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:16 Dominik Winterer, Chengyu Zhang, and Zhendong Su

File #Commits

smt/theory_seq.cpp 33

smt/smt_context.cpp 30

smt/theory_lra.cpp 25

qe/qsat.cpp 16

ast/ast.cpp 16

smt/theory_arith_nl.h 15

ast/rewriter/seq_rewriter.cpp 14

ast/rewriter/rewriter_def.h 12

tactic/arith/purify_arith_tactic.cpp 11

smt/theory_seq.h 11

(a)

Filename #LoC changes

smt/theory_seq.cpp 1082

ast/rewriter/seq_rewriter.cpp 837

smt/theory_arith_nl.h 637

smt/theory_lra.cpp 434

tactic/ufbv/ufbv_rewriterċpp 375

math/lp/emonics.cpp 333

smt/smt_context.cpp 265

smt/theory_recfun.cpp 247

tactic/core/dom_simplify_tactic.cpp 229

tactic/arith/purify_arith_tactic.cpp 224

(b)

File #Commits

theory/arith/nonlinear_extension.cpp 7

theory/strings/theory_strings.cpp 6

preprocessing/passes/unconstrained_simplifier.cpp 5

theory/arith/nl_model.cpp 5

smt/smt_engine.cpp 5

theory/quantifiers/extended_rewriter.cpp 4

theory/quantifiers/quantifiers_rewriter.cpp 4

theory/quantifiers_engine.cpp 3

theory/quantifiers/instantiate.cpp 3

theory/arith/nonlinear_extension.h 3

(c)

Filename #LoC changes

theory/quantifiers/inst_propagator.cpp 864

theory/quantifiers/quantifiers_rewriter.cpp 611

theory/arith/nonlinear_extension.cpp 519

theory/strings/regexp_operation.cpp 292

theory/quantifiers/local_theory_ext.cpp 270

theory/strings/theory_strings.cpp 250

theory/arith/nonlinear_extension.h 212

preprocessing/passes/int_to_bv.cpp 201

theory/quantifiers/inst_propagator.h 194

smt/smt_engine.cpp 130

(d)

Fig. 14. Top-10 (a) files affected by bug fixing commits in Z3. (b) LoC changes per file in Z3 (c) files affected
by bug fixing commits in CVC4. (d) LoC changes per file in CVC4.

quantifier rewriting module. The fix deleted the previous buggy rewriting steps and re-implemented

an alternative rewriter. Compared to the analysis of file changes, commits with high LoC have a

stronger correlation with interesting and systematic fixes in the SMT solvers. On average, the bugs

found by OpFuzz lead to 34 and 63 LOC changes for each commit in Z3 and CVC4 respectively.

RQ2: Which parts/files of Z3’s and CVC4’s codebases are most affected by the fixes? In this

research question, we investigate the influence of OpFuzz’s bug findings on the respective codebases
of Z3 and CVC4. For this purpose, we use two metrics. First, the number of bug-fixing commits that

changed a specific file 𝑓 in either Z3’s or CVC4’s codebase, i.e., in how many bug-fixing commits

file 𝑔 was included. The second metric is the cumulative number of LoC changes for a file 𝑓 caused

by fixes in either Z3’s or CVC4’s codebase. For each file 𝑓 we add up additions and deletions based

on GitHub’s changeset.

In general, there are 103 files in CVC4 and 348 files in Z3 are affected by the fixes of our

bugs. Fig. 14 shows a top-10 ranking of files in Z3’s (top row) and CVC4’s codebase (bottom

row) with respect to the two metrics. We observe that in both Fig. 14a and Fig. 14b, most files

belong to the "smt" directory which contains the core implementations of Z3. Strikingly, the

files "smt/theory_seq.cpp" (Z3’s sequence and string solvers), "smt/theory_arith_nl.h" (Z3’s non-

linear arithmetic solver) and "smt/theory_lra.cpp" (Z3’s linear arithmetic solver) are ranked in

the top-6 in both #Commits and #LoC changes rankings. This suggests that many of OpFuzz bug
findings lead to the fixes in the core components of Z3. Besides files from the "smt" directory,

the remaining files are mostly part of Z3’s "tactic" and "ast" directories. These contain the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:17

0-
10
0

10
0-
20
0

1K
-2
K

20
0-
30
0

2K
-3
K

30
0-
40
0

3K
-4
K

40
0-
50
0

4K
-5
K

50
0-
60
0

5K
+

60
0-
70
0

70
0-
80
0

80
0-
90
0

90
0-
1K

0

100

200

300

154

270

24

122

11

59

8
35

1
20

511 14 8 5

Formula sizes (bytes)

#F
or
m
ul
as

Fig. 15. File-size distribution of reduced bug-triggering formulas.

implementations of solver front-end and Z3’s solving tactics. Note, several formulas rewriters

related files such as files "ast/rewriter/seq_rewriter.cpp", "ast/rewriter/rewriter_def.h" and

"tactic/ufbv/ufbv_rewriter.cpp" are also highly ranked in the top-10 files affected by the fixes.

We now turn our attention to CVC4. Consider the bottom row of Fig. 14 that presents file and LoC

rankings in CVC4. The files that are related to quantifiers (under the path "theory/quantifiers") are

the majority in both rankings. Besides, the files "nonlinear_extension.cpp", "theory_strings.cpp"

and "quantifiers_rewriter.cpp" are listed in both rankings. The file "nonlinear_extension.cpp"

was the implementation of non-linear arithmetic solver, and a recent pull request moved the core

of the non-linear arithmetic solver elsewhere. The file "quantifiers_rewriter.cpp" contains the

implementations of quantifier rewriters that caused soundness bugs, as RQ1 revealed. The file

"theory_strings.cpp" contains the decision procedures for string logic in CVC4. Moreover the

model generator of non-linear arithmetic ("nl_model.cpp") and the pre-processor ("int_to_bv.cpp",

"unconstrained_simplifier.cpp") are also heavily influenced by bug fixes.

RQ3: What is the file-size distribution of the bug-triggering formulas? In this research ques-

tion, we investigate the file-size distribution of reduced bug-triggering formulas. We collected the

bug-triggering formulas from all confirmed and fixed Z3 and CVC4 bug reports we filed. Fig. 15

presents the distribution of bug-triggering formulas collectively for Z3 and CVC4. According to

Fig. 15, most formulas have less than 600 bytes, while the range of 100-200 bytes has the highest

formula count. Among all bugs-triggering formula we reported, there are three formulas to have

more than 10,000 bytes i.e., 23,770 bytes, 19,473 bytes, and 10,562 bytes. All of these are in bit-vector

logic. The formula with 23,770 bytes and 10 562 bytes triggered an invalid model bug and a crash

bug respectively in Z3, and both of them take the developers a half month to fix. The formula with

19 473 bytes triggered a crash bug in CVC4.

The top-3 smallest bug-triggering formulas have 21, 30, and 34 bytes respectively. The 21-byte

formula is an invalid formula that triggers a crash bug in Z3. The 30 bytes and 34 bytes formulas

are a crash-triggering formula for Z3 and CVC4 respectively, both point to the corner cases. These

three bugs were all fixed promptly, i.e., in less than one day, which is significantly faster than the

bugs triggered by the top-3 largest formulas. In general, the average size of the bug-triggering

formulas reported by us is 426 bytes, which is usually sufficiently small for the developers.

5.2 Insights
Insight 1: OpFuzz’s Bugs Are of High Quality. RQ1 and RQ2 have shown that OpFuzz’s bug
findings have not only led to non-trivial file and LoC changes in both CVC4 and Z3, but also

motivated the developers to reorganize and redesign some parts of the solvers. Systematic in-

frastructure changes such as the decoupling of the monomial instantiation propagator show this.

Furthermore, OpFuzz’s bugs affected core implementations of the SMT solvers Z3 and CVC4. As

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:18 Dominik Winterer, Chengyu Zhang, and Zhendong Su

RQ2 presented, the "smt" directory in Z3 and "theory" directory in CVC4, solvers are among the

most affected. Besides, the bugs also affected various pre-processors and rewriters components.

Third, the bug-triggering formulas that OpFuzz could be reduced to reasonable sizes (cf. RQ3).

Insight 2: weak components in Z3 and CVC4. From the rankings in RQ2, we identify several

"weak" components in Z3 and CVC4. First, in both Z3 and CVC4, source files for the non-linear

arithmetic solvers rank high. This indicates: decision procedures for non-linear arithmetic are

among the weak components in SMT solvers. Apart from these, rewriters are weak components as

well. Z3’s "rewriter_def.h", "ufbv_rewriter.cpp" and "seq_rewriter.cpp" are among the top-10

in LoC changes. In CVC4, the quantifier rewriter "quantifiers_rewriter.cpp" is ranked high (5th

and 2nd in Fig. 14c and Fig. 14d respectively). In Z3, we identified the tactics to be a weak component.

Among the filed bug reports, there are 126 including reports related to tactics. In Fig. 14, these are

"purify_arith_tactic.cpp" and "dom_simplify_tactic.cpp" which are ranked 9th or 10th in both

Fig. 14a and Fig. 14b.

Insight 3: bugs found by OpFuzz can usually be reduced to small-sized formulas but bug
reduction can be challenging. As we have observed (c.f. Fig. 15), 90% of all bugs found byOpFuzz
are triggered by formulas of less than 600 bytes. Small-sized formulas facilitate the bug fixing

efforts significantly. As we observed in RQ3, the top-3 largest formulas took the developers around

half a month while the top-3 smallest formulas have been fixed very fast, usually within just a few

hours. However, reducing SMT formulas to such small sizes can be challenging. ddSMT [Niemetz

and Biere 2013] is the only existing specialized SMT formula reducer for that purpose which does

however not fully support the SMT-LIB 2.6 standard and formulas in string logic. We therefore

preferred C-Reduce, a C code reducer to reduce SMT formulas. While creduce worked well in

practice, bug reduction is often challenging especially if the time for solving the formula is high.

5.3 Assorted Bug Samples
This subsection details multiple bug samples from our extensive bug hunting campaign of the SMT

solvers Z3 and CVC4 and inspects the root causes. The bugs shown are reduced by C-Reduce, since

the unreduced formulas are too large to be presented.

Fig. 16a. shows a soundness bug in Z3’s bit-vector logic. The formula is clearly unsatisfiable as the

nested bvxnor expression equals the unnested bvxnor expression. However, Z3 reports unsat on it,

which is incorrect. The root cause for this bug is an incorrect handling of the ternary bvxnor in Z3’s

bitvector rewriter "bv_rewriter.cpp". The bvxnor was implemented as the negation of the bvxor

operator. This is correct in the binary case, however incorrect for the n-ary case. To see this con-

sider, e.g., (bvxnor a b c) = (bvxnor (bvxnor a b) c) = true ≠ (not (bvxor a b c)) = false

for a = b = c = true. In the fix, Z3’s main developer recursively reduces n-ary case bvxnor expres-

sion to the binary case. The fix lead to a 17 LoC change in ast/rewriter/bv_rewriter.cpp.

Fig. 16b. shows a soundness bug in the implementation of the symbolic square root in CVC4. The

formula can be satisfied by assigning an arbitrary negative real to variable x. CVC4 incorrectly

reported unsat on this formula. The root cause for this bug is an inadmissible reduction of the

square root expression (sqrt x) to "choice real y s.t. x = y · y". For negative x, there is no y to satisfy

the equation. However, square roots of negative numbers are permitted by the SMT-LIB standard.

CVC4’s developers fixed this bug by interpreting square roots of negative numbers as an undefined

value that can be chosen arbitrarily. For the formula in Fig. 16b, the term (/ (sqrt x) (sqrt x))

can be arbitrarily chosen, as the second assert demands x to be negative. Therefore, the formula in

Fig. 16b is satisfiable. The bug-fixing pull request was labeled as "major" which reveals that this

issue was of high importance to the CVC4 developers. The fix lead to a 126 LoC change on 5 files.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:19

1 (declare-const a (_ BitVec 8))

2 (declare-const b (_ BitVec 8))

3 (declare-const c (_ BitVec 8))

4 (assert (= (bvxnor a b c)

5 (bvxnor (bvxnor a b) c)))

6 (check-sat)

(a) Soundness bug in Z3 caused by a logic in the
handling of the ternary bvxnor operator.
https://github.com/Z3Prover/z3/issues/2832

1 (set-logic ALL)

2 (declare-fun x () Real)

3 (assert (< x 0))

4 (assert (not (=

5 (/ (sqrt x) (sqrt x)) x)))

6 (check-sat)

(b) Soundness bug in CVC4 caused by an inad-
missble reduction of the square root operator.
https://github.com/CVC4/CVC4/issues/3475

1 (declare-fun a () Int)

2 (declare-fun b (Int) Bool)

3 (assert (b 0)) (push)
4 (assert (distinct true

5 (= a 0) (not (b 0))))

6 (check-sat)

(c) Soundness bug in Z3 in the boolean rewriter
handling the distinct operator.
https://github.com/Z3Prover/z3/issues/2830

1 (set-logic QF_AUFBVLIA)

2 (declare-fun a () Int)

3 (declare-fun b (Int) Int)

4 (assert (distinct (b a)

5 (b (b a))))

6 (check-sat)

(d) Soundness bug in CVC4 due to a variable re-
use in a simplification.
https://github.com/CVC4/CVC4/issues/4469

1 (declare-fun a () String)

2 (declare-fun b () Int)

3 (assert (> b 0))

4 (assert (= (int.to.str b)

5 (str.++ "0" a)))

6 (check-sat)

(e) Soundness bug in Z3 due to a missing axiom
in the integer to string conversion function.
https://github.com/Z3Prover/z3/issues/2721

1 (declare-fun x () String)

2 (declare-fun y () String)

3 (assert (= (str.indexof x y 1)

4 (str.len x)))

5 (assert (str.contains x y))

6 (check-sat)

(f) Soundness bug in CVC4 due to an invalid in-
dexof range lemma.
https://github.com/CVC4/CVC4/issues/3497

1 (declare-fun a () Real)

2 (assert (forall ((b Real))

3 (= (= a b) (= b 0))))

4 (check-sat-using qe)

(g) Longstanding soundness bug in Z3’s qe tactic
(since version 4.8.5).
https://github.com/Z3Prover/z3/issues/4175

1 (declare-fun a () Real)

2 (assert (= (* 4 a a) 9))

3 (check-sat)
4 (get-model)

(h) Invalid model bug in CVC4 caused by an in-
correct implementation of the square root.
https://github.com/CVC4/CVC4/issues/3719

1 (declare-fun a () Int)

2 (declare-fun b () Real)

3 (declare-fun c () Real)

4 (assert (> a 0))

5 (assert (= (* (/ b b) c) 2.0))

6 (check-sat)
7 (check-sat)
8 (get-model)

(i) Invalid model bug in Z3. For the second
check-sat query, Z3 returns an invalid model.
https://github.com/Z3Prover/z3/issues/3118

1 (declare-fun d () Int)

2 (declare-fun b () (Set Int))

3 (declare-fun c () (Set Int))

4 (declare-fun e () (Set Int))

5 (assert (subset b e))

6 (assert (= (card b) d))

7 (assert (= (card c) 0 (mod 0 d)))

8 (assert (> (card (setminus e

9 (intersection (intersection e b)

10 (setminus e c)))) 0))

11 (check-sat)

(j) Soundness bug in CVC4’s set logic caused by
an incorrectly implemented cardinality rule.
https://github.com/CVC4/CVC4/issues/4391

Fig. 16. Selected bug samples in Z3 and CVC4.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

https://github.com/Z3Prover/z3/issues/2832
https://github.com/CVC4/CVC4/issues/3475
https://github.com/Z3Prover/z3/issues/2830
https://github.com/CVC4/CVC4/issues/4469
https://github.com/Z3Prover/z3/issues/2721
https://github.com/CVC4/CVC4/issues/3497
https://github.com/Z3Prover/z3/issues/4175
https://github.com/CVC4/CVC4/issues/3719
https://github.com/Z3Prover/z3/issues/3118
https://github.com/CVC4/CVC4/issues/4391

193:20 Dominik Winterer, Chengyu Zhang, and Zhendong Su

Fig. 16c. is a soundness bugs in Z3. Although the second assert is unsatisfiable (as true cannot be dis-
tinct with (not (b 0)), Z3 reported sat on this formula. The bug is caused by a logic error in a loop

condition of a rewriting rule for the distinct operator. An incorrect index condition accidentally

skips the last argument in an n-ary distinct. The push command is necessary for triggering the bug,

as it actives the rewriter for distinct. The developer has fixed this bug by correcting the index con-

dition. Hence, his fix consisted of only two character deletes in ast/rewriter/bool_rewriter.cpp.

Fig. 16d. shows a soundness bug in CVC4’s logic of uninterpreted functions In default mode, CVC4

incorrectly reports unsat on this satisfiable formula. If we disable unconstrained simplification

(–no-unconstrained-simp), CVC4 correctly reports unsat. The bug is caused by an unsound variable

reuse. Our bug report got a "major" label by CVC4’s developers and was promptly fixed. The

core fix consisted of three LoC deletions in file the unconstrained simplifier implementation

"preprocessing/passes/unconstrained_simplifier.cpp".

Fig. 16e. depicts a soundness bug in Z3’s QF_SLIA logic. The formulas is unsatisfiable, since if

assertion b > 0 holds, there does not exist an a starting with "0". However, Z3 reports sat on this

formula. The developers fixed this issue by adding an axiom to the smt/theory_seq.cpp adding two

additional LoC to this file.

Fig. 16f. shows a soundness in CVC4’s string logic. The intuition behind this formula is the

following. The index of string y in x after position 1 should be equal to the length of string x.

Furthermore x should contain y. The formula can be satisfied by setting y to the empty string

and x to a string of length 1. However, CVC4 incorrectly reports unsat. The root cause was a

logic error in theory/strings/theory_strings.cpp The developer’s fix changed three characters in

theory/strings/theory_strings.cpp. The fix is labelled as "major".

Fig. 16g. presents a long-standing soundness bug in Z3’s qe tactic. It affects z3 release from version

4.8.5 to 4.8.7. The qe tactic is an equisatisfiable transform for eliminating quantifiers. Hence, the

satisfiability should not be changed by using the qe tactic. The formula is satisfiable by assigning a

to 0, while Z3’s qe tactic reports unsat. The bug has been confirmed by Z3’s developers but has not

been fixed yet.

Fig. 16h. shows an invalid model bug in CVC4. CVC4 correctly reports sat but generates the model

{𝑎 ↦→ −9
2 } which does not satisfy the formula. The bug is caused in CVC4’s implementation of the

square root. A logic error assigns the result of the square root to be the square root’s argument.

The fix is labeled as "major" by the developers, and promptly fixed only with a two LoC change in

file theory/arith/nl_model.cpp.

Fig 16i. shows an invalid model bug in Z3. The (check-sat) command appears twice in the formula.

This means that Z3 is queried twice for solving. Z3 reports unknown for the first query and sat

for the second. In the second query, Z3 gives the following invalid model {𝑎 ↦→ 0, 𝑏 ↦→ 0.0, 𝑐 ↦→
16.0, 00 ↦→

1
8 } violating (> a 0). The developers fixed this bug through three LoC changes in file

solver/tactic2solver.cpp.

Fig. 16j. presents a soundness bug in CVC4’s set logic. CVC4 returns unsat on this satisfiable formula.

The root cause is an incorrectly implemented set cardinality rule in the cardinality extension of

CVC4. CVC4’s set solver uses lemmas to guess the equalities for terms by identifying cycles of

terms 𝑒1 = · · · = 𝑒2 = · · · = 𝑒2. CVC4 has incorrectly assumed that these cycles are loops and

in that case would conclude 𝑒1 = · · · = 𝑒2. However, the cycles could have a lasso form which

was triggered by our formula. The developers fixed this issue, included the formula to CVC4’s

regression test suite and marked the pull request to be critical for CVC4’s 1.8 release. The fix was

labeled as "major" and made 9 LoC changes to theory/sets/cardinality_extension.cpp.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:21

6 RELATEDWORK

Testing SMT solvers. This paper is not the first work on testing SMT solvers. Roughly ten years

ago, the fuzzing tool FuzzSMT [Brummayer and Biere 2009b] has been proposed, which is based

on differential testing and targeted bit-vector logic. FuzzSMT uses a grammar for generating

the SMT formula. FuzzSMT totally found 16 solver defects in five solvers, however, none in Z3.

BtorMBT [Niemetz et al. 2017] is a testing tool for Boolector [Brummayer and Biere 2009a], an

SMT solver for the bit-vector theory. BtorMBT tests Boolector by generating random valid API call

sequences. However, BtorMBT did not find any bugs in a real setting.

The efforts of the SMT-LIB initiative [Barrett et al. 2020] have resulted in formalized SMT theories

and common input/output file formats. In addition, the yearly solver competition SMT-COMP

[Competition. 2020] heavily penalized solvers with soundness issues. Consequently, SMT solvers

have robustified and finding bugs in SMT solvers became more difficult. Researchers have hence

targeted the less mature logics such as the recently proposed theory of strings. Blotsky et al.
[Blotsky et al. 2018] proposed StringFuzz which focuses on performance issues in string logic.

StringFuzz generates test cases in two ways, one is mutating and transforming the benchmarks,

another one is randomly generating formulas from a grammar. StringFuzz found 2 performance

bugs and 1 implementation bug in z3str3. Bugariu and Müller [Bugariu and Müller 2020] proposed

a formula synthesizer for String formulas that are by construction satisfiable or unsatisfiable. They

showed that their approach can detect many existing bugs in String solvers and they found 5 new

soundness/incorrect model bugs in z3 and z3str3. However, it remained an open question whether

automated testing tools could find bugs in theories except the unicode string theory in Z3 and

CVC4. Recently, semantic fusion [Winterer et al. 2020] has been proposed which is an approach

to stress-test SMT solvers by fusing formula pairs that are by construction either satisfiable or

unsatisfiable. Winterer et al.’s tool YinYang found 39 bugs in Z3 and 9 in CVC4. STORM [Numair

et al. 2020], another recent mutation-based SMT solver testing approach, found 27 bugs in Z3,

however none in CVC4. Another related approach is BanditFuzz [Scott et al. 2020], a reinforcement

learning-based fuzzer to detect SMT solver performance issues.

Compared to previous work, type-aware operator mutation is the simplest, while it has also

demonstrated to be the most effective technique for testing SMT solvers. Type-aware operator mu-

tations show a promising direction for testing SMT solvers which can benefit the whole community.

For example, OpFuzz can be used for the solver developers to stress-test new features conveniently.

Testing program analyzers. SMT solvers are fundamental tools for various program analyzers.

Hence, bugs in SMT solvers may affect the reliability of program analyzers. Especially because

program analyzers have become mature for practical use in recent years, ensuring the reliability of

program analyzers is crucial [Cadar and Donaldson 2016]. There are several works on program

analyzer’s robustness. For example, Zhang et al. [Zhang et al. 2019] tested software model checkers

via reachability queries, Bugariu et al. [Bugariu et al. 2018] found soundness and precision bugs

in numerical abstract domains, Qiu et al. [Qiu et al. 2018] and Pauck et al. [Pauck et al. 2018]

found bugs in the analyzers of Android apps. Type-aware operator mutation contributes to testing

program analyzers by finding bugs in SMT solvers. Differential testing based approaches have been

effective in finding bugs in program analyzers. For example, Klinger et al. [Klinger et al. 2019] and
Kapus et al. [Klinger et al. 2019] proposed the approaches for testing software model checkers and

symbolic executors respectively using differential testing, Wu et al. [Wu et al. 2013] tested alias

analyzers by cross-checking the dynamic aliasing information. In this work, OpFuzz leverages
differential testing to detect soundness bugs in SMT solvers.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

193:22 Dominik Winterer, Chengyu Zhang, and Zhendong Su

Mutation-based testing. Type-aware operator mutation belongs to the family of mutation-based

testing techniques. The closest work is skeletal program enumeration (SPE) [Zhang et al. 2017],

an approach for validating compilers. Similar to type-aware mutation testing, program skeletons

are generated from a set of seed programs. The holes in these skeletons are then systematically

filled by exhaustive enumeration. However, unlike type-aware operator mutation, SPE focuses on

program variables and not on functions. SPE provides relative guarantees with respect to the input

seed programs. Type-aware operator mutation is also related to FuzzChick [Lampropoulos et al.

2019], a coverage-guided fuzzer for Coq programs. FuzzChick generates test cases by semantic

mutations at type-level. FuzzChick is aware of parameter types and generates new values for the

parameters while preserving type-correctness. Type-aware operator mutation, on the other hand,

is focusing on the operators’ types and to generate highly diverse SMT formulas.

Type-aware operator mutation also belongs to black-box fuzzing techniques. The black-box

fuzzing techniques, such as SYMFUZZ [Cha et al. 2015], leverage user-provided seeds and generate

new mutated inputs to uncover security issues. Grey-box fuzzing enhances black-box fuzzing by

code coverage guidance and has been successfully applied to software testing recently. AFL [Za-

lewski 2020] is a popular tool for binary grey-box fuzzing. Follow-upworks, such as FairFuzz [Lemieux

and Sen 2018] and Steelix [Li et al. 2017], improved the performance of AFL on the binary level.

However, binary level fuzzing is ineffective on programs with highly structured inputs (e.g.. PDF
viewers, programming language engines etc.) because of the many syntactically invalid inputs

being generated. To generate valid test inputs, grammar-aware grey-box fuzzers were proposed.

AFLSmart [Pham et al. 2019], Superion [Wang et al. 2019] and Nautilus [Aschermann et al. 2019]

are general grammar-aware grey-box fuzzers targeting programming language engines. They use

code coverage to guide the grammar-aware mutations. As a key difference to type-aware operator

mutation, they both need to fully parse the program and work on the abstract syntax tree level,

which may lead to a higher computational cost during fuzzing. Type-aware operator mutation, on

the other hand, works on the token level and without fully parsing the formula.

Besides general black-box and grey-box fuzzing, various domain-specific fuzzing approaches

exist, e.g., for testing compilers [Cummins et al. 2018; Le et al. 2014; Lidbury et al. 2015; Yang et al.

2011; Zhang et al. 2017], testing database management systems [Jung et al. 2019; Mishra et al. 2008;

Rigger and Su 2020; Seltenreich 2020], and testing OS kernel [Corina et al. 2017; Han and Cha 2017;

Schumilo et al. 2017]. Type-aware operator mutation is also a domain-specific fuzzing technique

which is unusually effective for testing SMT solvers.

7 CONCLUSION
We introduced type-aware operator mutation, a simple and effective approach for stress-testing

SMT solvers. We realized type-aware operator mutation in our testing tool OpFuzz in little more

than 200 LoC, supporting only the most basic operators of the SMT-LIB language. Despite this,

OpFuzz found 819 confirmed unique bugs (685 fixed) in Z3 and CVC4. These bug findings are

highly diverse, ranging over various types, logics and solver configurations in both state-of-the-art

SMT solvers. Among these ones, there were many critical bugs. Type-aware operator mutation

has found many more bugs than previous approaches by a large margin. Our bug findings show

that SMT solvers are not yet reliable enough, even the most popular and stable, such as Z3 and

CVC4. Our highly practical tool OpFuzz can help SMT solver developers making their solvers more

reliable. For future work, we want to explore the full potential of type-aware operator mutation by

invoking more sophisticated type-aware mutations.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:23

ACKNOWLEDGMENTS
We thank the anonymous SPLASH/OOPSLA reviewers for their valuable feedback. Our special

thanks go to the Z3 and CVC4 developers, especially Nikolaj Bjørner, Lev Nachmanson, ChristophM.

Wintersteiger, Murphy Berzish, Arie Gurfinkel, Andrew Reynolds, Andres Nötzli, Haniel Barbosa,

Clark Barrett, etc., for useful information and addressing our bug reports. Chengyu Zhang was

partially supported by the China Scholarship Council, NSFC Projects No. 61632005 and No. 61532019.

A TEST SEED FORMULAS

Logic # non-inc # inc # total

QF_SLIA 67,584 - 67,584

QF_FP 40,318 2 40,320

QF_NIA 23,876 10 23,886

AUFLIRA 20,011 - 20,011

QF_ABVFP 18,093 69 18,162

QF_BVFP 17,231 182 17,413

QF_ABV 15,084 1,272 16,356

UFNIA 13,509 - 13,509

QF_NRA 11,489 - 11,489

UFLIA 10,137 - 10,137

QF_UF 7,457 766 8,223

QF_DT 8,000 - 8,000

UF 7,668 - 7,668

QF_LIA 6,947 69 7,016

BV 5,846 18 5,864

UFDT 4,527 - 4,527

NRA 3,813 - 3,813

QF_UFBV 1,234 2,330 3,564

AUFLIA 3,276 - 3,276

FP 2,484 - 2,484

LRA 2,419 5 2,424

QF_S 2,319 - 2,319

QF_IDL 2,193 - 2,193

UFLRA 15 1,870 1,885

AUFBVDTLIA 1,708 - 1,708

QF_LRA 1,648 10 1,658

AUFNIRA 1,480 165 1,645

QF_AUFLIA 1,303 72 1,375

Logic # non-inc # inc # total

QF_UFLIA 583 773 1,356

QF_UFLRA 1,284 - 1,284

AUFDTLIA 728 - 728

LIA 607 6 613

QF_AX 551 - 551

QF_UFNIA 478 1 479

QF_UFIDL 428 - 428

UFDTLIA 327 - 327

QF_RDL 255 - 255

BVFP 224 10 234

QF_ALIA 126 44 170

QF_BVFPLRA 168 - 168

UFBV 121 - 121

QF_ANIA 95 5 100

QF_AUFBV 56 31 87

UFIDL 68 - 68

ALIA 42 24 66

QF_FPLRA 57 - 57

QF_UFNRA 37 - 37

ABVFP 30 4 34

NIA 20 - 20

QF_AUFNIA 17 - 17

QF_LIRA 7 - 7

AUFNIA 3 - 3

QF_NIRA 3 - 3

UFDTNIA 1 - 1

cvc4regr 176 1,594 1,770

z3test 479 841 1,320

Total 308,640 10,173 318,813

Fig. 17. Formula counts for the respective benchmarks sets. Colum #non-inc refers to the count of non-
incremental SMT-LIB files, colum #inc refers to the count of incremental SMT-LIB files. z3test and cvc4regr
refer to CVC4’s and Z3’s respective regression test suites.

REFERENCES
Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert.

2019. NAUTILUS: Fishing for deep bugs with grammars. In NDSS.
Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and

Cesare Tinelli. 2011. CVC4. In CAV. 171–177.
Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2020. The satisfiability modulo theories library (SMT-LIB). Retrieved

2020-05-15 from www.SMT-LIB.org

Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB standard: Version 2.0. In SMT.
Murphy Berzish, Yunhui Zheng, and Vijay Ganesh. 2017. Z3str3: A string solver with theory-aware branching. FMCAD

(2017), 55–59.

Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and Vijay Ganesh. 2018. StringFuzz: A fuzzer

for string solvers. In CAV. 45–51.
Robert Brummayer and Armin Biere. 2009a. Boolector: An efficient SMT solver for bit-vectors and arrays. In TACAS.

174–177.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

www.SMT-LIB.org

193:24 Dominik Winterer, Chengyu Zhang, and Zhendong Su

Robert Brummayer and Armin Biere. 2009b. Fuzzing and delta-debugging SMT solvers. In SMT. 1–5.
Alexandra Bugariu and Peter Müller. 2020. Automatically testing string solvers. In ICSE. 459–1470.
Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller. 2018. Automatically testing implementations of

numerical abstract domains. In ASE. 768–778.
Cristian Cadar and Alastair Donaldson. 2016. Analysing the program analyser. In ICSE. 765–768.
Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and automatic generation of high-coverage

tests for complex systems programs. In OSDI. 209–224.
Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive mutational fuzzing. In SP. 725–741.
Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani. 2013. The MathSAT5 SMT solver. In

TACAS. 93–107.
The International SMT Competition. 2020. SMT-COMP. Retrieved 2020-05-15 from https://smt-comp.github.io/2019/index.

html

Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang Hao, Christopher Kruegel, and Giovanni

Vigna. 2017. Difuze: Interface aware fuzzing for kernel drivers. In CCS. 2123–2138.
Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler fuzzing through deep learning. In

ISSTA. 95–105.
CVC4. 2020. CVC4 Regression Test Suite. Retrieved 2020-05-15 from https://github.com/CVC4/CVC4/tree/master/test/regress

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In TACAS. 337–340.
Rob DeLine and Rustan Leino. 2005. BoogiePL: A typed procedural language for checking object-oriented programs. Technical

Report.

David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A theorem prover for program checking. JACM (2005),

365–473.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In PLDI. 213–223.
HyungSeok Han and Sang Kil Cha. 2017. Imf: Inferred model-based fuzzer. In CCS. 2345–2358.
Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2019. APOLLO: Automatic detection and diagnosis of

performance regressions in database systems. In VLDB. 57–70.
Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially testing soundness and precision of program

analyzers. In ISSTA. 239–250.
Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage guided, property based testing. In OOPSLA.

181:1–181:29.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In PLDI. 216–226.
Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage.

In ASE.
Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu, and Alwen Tiu. 2017. Steelix: Program-state

based binary fuzzing. In ESEC/FSE.
Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson. 2015. Many-core compiler fuzzing. In PLDI.

65–76.

Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. 2008. Generating targeted queries for database testing. In SIGMOD.
499–510.

Aina Niemetz and Armin Biere. 2013. ddSMT: A delta debugger for the SMT-LIB v2 format. In SMT. 36–45.
Aina Niemetz, Mathias Preiner, and Armin Biere. 2017. Model-based API testing for SMT solvers. In SMT. 10.
Mansur Numair, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020. Detecting critical bugs in SMT solvers

using blackbox mutational fuzzing. arXiv e-prints (April 2020), arXiv:2004.05934.
Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android taint analysis tools keep their promises?. In ESEC/FSE.

331–341.

Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Razvan Caciulescu, and Abhik Roychoudhury. 2019.

Smart greybox fuzzing. TSE (2019).

Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe. In

ISSTA. 176–186.
John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case reduction for C compiler

bugs. In PLDI. 335–346.
Andrew Reynolds, Morgan Deters, Viktor Kuncak, Clark W. Barrett, and Cesare Tinelli. 2015. On counterexample guided

quantifier instantiation for synthesis in CVC4. In CAV.
Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database engines via non-optimizing reference

Engine Construction. In OOPSLA.
Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-

assisted feedback fuzzing for OS kernels. In USENIX Security. 167–182.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

https://smt-comp.github.io/2019/index.html
https://smt-comp.github.io/2019/index.html
https://github.com/CVC4/CVC4/tree/master/test/regress

On the Unusual Effectiveness of Type-Aware Operator Mutations for ... 193:25

Joseph Scott, Federico Mora, and Vijay Ganesh. 2020. BanditFuzz: Fuzzing SMT solvers with reinforcement learning. In

CAV.
Andreas Seltenreich. 2020. SQLSmith. Retrieved 2020-08-13 from https://github.com/anse1/sqlsmith

SMT-LIB. 2020. SMT-LIB Benchmarks. Retrieved 2020-05-15 from http://smtlib.cs.uiowa.edu/benchmarks.shtml

Armando Solar-Lezama. 2008. Program synthesis by sketching. Ph.D. Dissertation. UC Berkeley. https://people.csail.mit.

edu/asolar/papers/thesis.pdf

Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In PLDI.
530–541.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-aware greybox fuzzing. In ICSE. 724–735.
Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT solvers via semantic fusion. In PLDI. 718–730.
Jingyue Wu, Gang Hu, Yang Tang, and Junfeng Yang. 2013. Effective dynamic detection of alias analysis errors. In ESEC/FSE.

279–289.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDI.
283–294.

Z3. 2020. Z3 Regression Test Suite. Retrieved 2020-05-15 from https://github.com/Z3Prover/z3test

Michal Zalewski. 2020. american fuzzy lop. Retrieved 2020-08-12 from https://lcamtuf.coredump.cx/afl/

Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong Su. 2019. Finding and understanding

bugs in software model checkers. In ESEC/FSE. 763–773.
Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enumeration for rigorous compiler testing. In

PLDI. 347–361.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 193. Publication date: November 2020.

https://github.com/anse1/sqlsmith
http://smtlib.cs.uiowa.edu/benchmarks.shtml
https://people.csail.mit.edu/asolar/papers/thesis.pdf
https://people.csail.mit.edu/asolar/papers/thesis.pdf
https://github.com/Z3Prover/z3test
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Approach
	3.1 Type-Aware Operator Mutation
	3.2 OpFuzz

	4 Empirical Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results

	5 In-depth Bug Analysis
	5.1 Quantitative Analysis
	5.2 Insights
	5.3 Assorted Bug Samples

	6 Related work
	7 Conclusion
	Acknowledgments
	A Test Seed Formulas
	References

